IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gümüşhane Üniversitesi Fen Bilimleri Dergisi
  • Volume:14 Issue:2
  • Small object detection method with k-detector for metal parts surface defect detection

Small object detection method with k-detector for metal parts surface defect detection

Authors : Yavuz Selim Balcıoğlu
Pages : 538-549
Doi:10.17714/gumusfenbil.1391054
View : 50 | Download : 59
Publication Date : 2024-06-15
Article Type : Research Paper
Abstract :In the process of its development, intelligent manufacturing often focuses on production flexibility, client customization, and quality control, all of which are required for the manufacture of powder-based metallurgy. In particular, the identification and categorization of defects are crucial steps in the production processes involved in powder-based metallurgy. Intelligent strategies to detect faults in metal parts continue to be a challenge in automated industrial production lines. These techniques have been a particular concern for microscopic metal component producers for a long time. Due to its precision and speed, the YOLOv4 approach has been widely used for object detection. On the other hand, the identification of tiny targets, particularly imperfections on the surface of metal parts, continues to present a number of obstacles and difficulties. To increase the overall performance of detection, this research provided a technique for the detection of tiny objects based on YOLOv4 for such objects. To increase the effectiveness of the detection process, this involves expanding the size of the k detector while simultaneously eliminating unnecessary branches of the YOLO head network. Experiments have shown that the KD-YOLO model performs better than its predecessors, YOLOv4, YOLOv5, and PP-YOLO, in terms of the total number of parameters, classification accuracy and detection precision.
Keywords : Obje tanıma, Yüzey tespiti, Kalite kontrol

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025