- İktisat Politikası Araştırmaları Dergisi
- Volume:9 Issue:2
- Makine Öğrenmesi ile Nakit Akış Tablosu Üzerinden Kredi Skorlaması: XGBoost Yaklaşımı
Makine Öğrenmesi ile Nakit Akış Tablosu Üzerinden Kredi Skorlaması: XGBoost Yaklaşımı
Authors : Güner ALTAN, Server DEMİRCİ
Pages : 397-424
Doi:10.26650/JEPR1114842
View : 17 | Download : 11
Publication Date : 2022-07-29
Article Type : Research Paper
Abstract :Modernleşme ve globalleşmeyle birlikte makine öğrenmesi yöntemleri bankacılık ve finans sektöründe artan bir ivmeyle kullanılmaya başlanmıştır. Özellikle bankacılık sektöründe sunulan kredi ürünlerinin artmasıyla kötü ve iyi müşteriler arasında tam olarak ayırt etme yeteneği son derece önemli hale gelmiştir. Bu ayırt etme yeteneği sadece bankaların karlılıklarını artırmakla kalmaz, aynı zamanda pazardaki rekabet gücünü de arttırır. Bu bağlamda bankalar firmaları borçlandırmadan önce kredi değerlendirme sürecinden geçirirler ve bu sürecin en önemli ayağını da şüphesiz skorlama çalışması oluşturmaktadır. Bankaların taşıdığı en önemli risklerden birinin kredi riski olduğu düşünülürse kredi değerlendirme sürecinde skorkart çalışmasının da doğru, güvenilir ve hızlı bir şekilde sonuçlanmasının önemi yadsınamaz. Skorlama çalışmalarında firmanın solo ya da grup firması olması firmanın ya da firmaların değerlendirilmesini değiştirebilir. Grubu oluşturan firmalarda ana firma statüsündeki firmanın derecelendirme notu ne kadar iyi olursa olsun diğer firmaların notu düşük ise, konsolide derecelendirme notunu etkileyip düşürebilir. Bu kapsamda çalışmada grup firmalarına vurgu yapılmıştır. Çalışmanın amacı konsolide firmaların nakit akış tablosundan faydalanılarak bir skorkart modeli geliştirilmeye çalışılmasıdır. Python program dili makine öğrenmesi ile XGBoost, Gradient Boosting ve Neural Network yöntemleri kullanılmıştır. Bu üç yöntem karşılaştırılmış olup XGBoost yöntemi %80 doğruluk skoru ile tercih edilen model olmuştur.Keywords : Makine öğrenmesi, XGBoost, Kredi Skorlama, Python, Neural Network