- İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi
- Volume:3 Issue:2
- EEG SİNYALLERİ İLE EPİLEPSİ KRİZİNİN TAHMİNLENMESİNDE RASSAL ORMAN ALGORİTMASI İLE HİPER PARAMETRE O...
EEG SİNYALLERİ İLE EPİLEPSİ KRİZİNİN TAHMİNLENMESİNDE RASSAL ORMAN ALGORİTMASI İLE HİPER PARAMETRE OPTİMİZASYONUN UYGULANMASI
Authors : Fatih YILMAZ, Mustafa Cem KASAPBAŞI
Pages : 189-203
View : 16 | Download : 10
Publication Date : 2021-02-28
Article Type : Research Paper
Abstract :Dünyadaki 50 milyondan fazla kişiden oluşan tüm nüfusun yaklaşık % 1'i epilepsi ve epileptik nöbetlerden etkilenmektedir (Litt, Echauz 2002) (Kandel ve ark., 2000). Epileptik nöbetler, beynin elektriksel aktivitesindeki bir rahatsızlıktan kaynaklanır. Epilepsi nöbetinin saptanması genellikle elektroensefalografik (EEG) sinyal incelendikten sonra uzman görüşü tarafından gerçekleştirilir. Bu manuel bir süreçtir ve büyük ölçüde doktorun uzmanlığına dayanır. Bu nedenle, doktorların daha az hatayla teşhis koymasına yardımcı olmak için otomatik tanı veya yardım sistemleri gereklidir. Bu çalışmada, epileptik nöbetlerin varlığını sınıflandırmak için iyi bilinen (Andrzejak ve ark. 2001) bir veri kümesi kullanılmıştır. Veri setinin farklı konfigürasyonları literatürde bir kısmı Lojistik Regresyon, Dalgacık yöntemi, Karar Ağacı, Destek Vektör Makinesi, Yoğun Sinir Ağları, vb. birçok veri madenciliği ve makine öğrenme algoritması ile incelenmiştir. İyi tanı beklentisini karşılamak için Rassal Orman kullanılarak sınıflandırma modeli geliştirilmiştir ve sonuçlar aynı veri seti üzerinde incelenen farklı yöntemlerle karşılaştırılmıştır. Çalışılan deneylerin bazı vakalarında %99,78 oranında doğruluk, %99,95 özgüllük ve %99,61 hassasiyet elde edilmiştir ve sonuçlar modelinin başarılı şekilde sınıflandırdığını göstermektedir.Keywords : EEG, Hiper Parametre Optimizasyonu, Makine öğrenmesi