IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Karadeniz Fen Bilimleri Dergisi
  • Volume:14 Issue:3
  • Meta-Sezgisel Yöntemlere Dayalı Kör Kaynak Sinyal Ayırma

Meta-Sezgisel Yöntemlere Dayalı Kör Kaynak Sinyal Ayırma

Authors : Eyup Gedikli, Emin Tuğcu
Pages : 1456-1470
Doi:10.31466/kfbd.1474735
View : 19 | Download : 19
Publication Date : 2024-09-15
Article Type : Research Paper
Abstract :Kör kaynak ayırma problemi, en az iki karışmış sinyalin bilinmeyen kaynak sinyallerini belirleme işlemidir. Kaynak sinyaller, tıbbi alanda doğru teşhisin yapılmasında, kablosuz haberleşmede, radar, görüntü, ses verilerinin analizi için önemlidir. Kör kaynak ayırma probleminde yaygın olarak bağımsız bileşen analizi kullanılır. Bağımsız bileşen analizinde, ileri istatistiksel ve cebirsel yöntemler kullanılarak entropi ve korelasyon uyumluluğuna bakılır. Sinyalleri ayırmak için en yaygın kullanılan bağımsız bileşen analizi (Independent Component Analysis, ICA) algoritmalarından FastICA, Gauss dağılımı olmama ve negentropinin maksimum uygunluk kriterlerini iterasyon tabanlı olarak araştırır. Bu çalışmada, benzer şekilde iterasyon tabanlı yöntemler olan meta-sezgisel algoritmalar (MSA), uygunluk fonksiyonunu optimize etmek için kullanılmıştır. Uygunluk fonksiyonu, karışık sinyal ayırma matris üretimi ve yakınsamayı kontrol etmek için kullanılır. Bu çalışmada, vektörleri ortogonalleştiren Gram Schmidt sürecine dayalı ayırma matris üretimi önerilmiştir. Deneyler, FastICA ile meta-sezgisel (MS) algoritmalardan ateş böceği algoritması ve parçacık sürü optimizasyonu algoritmasıyla yapılmıştır. Üç kaynaktan üretilen sinyallerin karıştırılıp gürültü eklenmesi ile karışık sinyaller oluşturulmuştur. Sinyallerin farklı frekanslarda üretilerek gerçekleştirilen deneylerde, önerilen yöntem ile geleneksel FastICA algoritmasından daha başarılı korelasyon katsayısı ve kök ortalama kare hata sonuçları elde edilmiştir.
Keywords : Ateş böceği algoritması, Bağımsız bileşen analizi, FastICA, Gram Schmidt süreci, Kör kaynak ayırma, Parçacık sürü optimizasyonu

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025