IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Konya Mühendislik Bilimleri Dergisi
  • Volume:8 Issue:3
  • MOODETECTR: MOOD DETECTION FOR TURKISH LYRICS THROUGH WORD VECTORS

MOODETECTR: MOOD DETECTION FOR TURKISH LYRICS THROUGH WORD VECTORS

Authors : Barış ÇİMEN, Ahmet Onur DURAHİM
Pages : 499-509
Doi:10.36306/konjes.788046
View : 17 | Download : 29
Publication Date : 2020-09-03
Article Type : Research Paper
Abstract :Çevrimiçi müzik platformlarının kullanımının artmasıyla birlikte, katalog tabanlı aramalar, duygu bazlı aramalara dönüşmüştür. Bu çalışmada, Türkçe şarkıların duygu durum tespiti için kelime vektörlerini kullanan yarı denetimli bir öğrenme çerçevesi olan MooDetecTR önerilmiştir. Bu çerçevede, önce kelime vektörleri Word2Vec ve GloVe algoritmaları ile 2,5 milyondan fazla Türkçe belge içeren geniş bir metinsel veri koleksiyonu kullanılarak oluşturulmuştur. Daha sonra, duygu durum tespiti için seçilen şarkı sözlerindeki kelimelerin, daha önceden eğitilmiş kelime vektörlerinin birleştirilmesiyle şarkı sözleri vektörleri üretilmiştir. Son olarak, oluşturulan bu şarkı sözleri vektörleri, müzik duygu durum tespitinde kullanılmak üzere çeşitli makine öğrenmesi algoritmaları kullanılarak oluşturulan modelleri eğitmek için kullanılmıştır. Türkçe müziklerde duygu durumu tespiti karşılaştırma yapılmak üzere ayrıca, hem TF-IDF ağırlıkları kullanılarak geleneksel kelime çantası modeli ile hem de Doc2Vec algoritması kullanılarak oluşturulan modeller ile gerçekleştirilmiştir. Kelimelerin köklerine ayrıştırılması ve gereksiz kelimelerin kaldırılmasının sonuçlara etkileri de incelenmiştir. Önerilen çerçeve ile elde edilen en iyi mikro-f1 skoru (%54,36), Doc2Vec ve kelime çantası yöntemlerinden elde edilen en iyi skorlardan sırasıyla %3,81 ve %2,92 (%7,54 ve %5,68 nispi iyileştirmeler) daha başarılıdır. Sonuç olarak, elde edilen skorlar, Türkçe metin sınıflandırma uygulamasında büyük metinsel verilerin kullanılması ile oluşturulan kelime vektörlerinin olumlu etkisini artan sınıflandırma başarı performansı ile açıkça göstermektedir.
Keywords : Metin sınıflandırması, Özellik üretimi, Müzik ruh hali sınıflandırma, Doğal dil işleme, Kelime vektörleri

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025