- Konya Mühendislik Bilimleri Dergisi
- Volume:10 Issue:4
- ATMOSFERİK PARTİKÜL MADDELERİN MAKİNE ÖĞRENMESİ İLE TAHMİNİ: BEŞİKTAŞ, İSTANBUL ÖRNEĞİ...
ATMOSFERİK PARTİKÜL MADDELERİN MAKİNE ÖĞRENMESİ İLE TAHMİNİ: BEŞİKTAŞ, İSTANBUL ÖRNEĞİ
Authors : Ece ÇETİN YAĞMUR
Pages : 807-826
Doi:10.36306/konjes.1082866
View : 12 | Download : 11
Publication Date : 2022-12-03
Article Type : Research Paper
Abstract :Hava kirliliği, insan sağlığına ve çevreye olumsuz etkileri nedeniyle uzun yıllardır tartışılmakta olan bir problemdir. Bu problemi çözmek ve gereken önlemleri almak amacıyla hava kalitesinin değerlendirilmesi önem arz etmektedir. Hava kalitesi değerlendirilirken kirletici konsantrasyonları analiz edilerek, toplum açısından herkesin anlayabileceği bir indeks sistemi kullanılmaktadır. Ulusal Hava Kalitesi İndeksi kapsamında kalite indeksi hesaplanan beş temel kirleticiden biri, ciddi solunum yolu hastalıklarına sebep olan atmosferik partikül maddelerdir. Bu çalışmada çapı 2,5 mikrondan küçük olan ve PM2,5 olarak adlandırılan atmosferik partikül maddelerin oluşumunda trafik yoğunluğu, meteorolojik koşullar ve NOX, SO2, PM10 hava kirleticilerinin etkisi araştırılmıştır. Bu amaçla İstanbul Büyükşehir Belediyesi tarafından farklı alanlarda verilerin paylaşıldığı açık veri portalından yararlanılarak Beşiktaş bölgesindeki hava kalitesi izleme istasyonu incelenmiştir. Atmosferik partikül maddelerin tahmininde Çoklu Doğrusal Regresyon insert ignore into journalissuearticles values(ÇDR);, Rassal Orman insert ignore into journalissuearticles values(RO);, Destek Vektör Makineleri insert ignore into journalissuearticles values(DVM); ve Yapay Sinir Ağları insert ignore into journalissuearticles values(YSA); kullanılmıştır. Regresyon denkleminde farklı bağımsız değişkenlerin incelendiği farklı modeller geliştirilmiştir. Geliştirilen modeller ve kullanılan makine öğrenme algoritmaları determinasyon katsayısı insert ignore into journalissuearticles values(R2);, düzeltilmiş R2, ortalama mutlak hata, ortalama hata karesi ve ortalama hata karesi kökü performans ölçütlerine göre karşılaştırılmıştır. Meteorolojik parametreler, trafik yoğunluğu, tarih ve PM10 konsantrasyonunun bağımsız değişken olarak kullanıldığı model, incelenen tüm performans ölçütlerine göre diğer modellere üstünlük sağlamıştır. Algoritmalar karşılaştırıldığında ise performans ölçütlerinin modellere göre değişiklik gösterdiği görülmüş ancak en iyi performans ortalamasına sahip teknik RO, en kötü performans ortalamasına sahip teknik ise ÇDR olarak bulunmuştur.Keywords : Hava Kalitesi, Makine Öğrenmesi, Doğrusal Regresyon, Rassal Orman Algoritması, Destek Vektör Makineleri, Yapay Sinir Ağları