IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Konya Mühendislik Bilimleri Dergisi
  • Volume:11 Issue:2
  • SENTIMENT CLASSIFICATION ON TURKISH TWEETS ABOUT COVID-19 USING LSTM NETWORK

SENTIMENT CLASSIFICATION ON TURKISH TWEETS ABOUT COVID-19 USING LSTM NETWORK

Authors : Mustafa ÇATALTAŞ, Büşra ÜSTÜNEL, Nurdan AKHAN BAYKAN
Pages : 341-353
Doi:10.36306/konjes.1173939
View : 118 | Download : 91
Publication Date : 2023-06-01
Article Type : Research Paper
Abstract :As Covid-19 pandemic affected everyone in various aspects, people have been expressing their opinions on these aspects mostly on social media platforms because of the pandemic. These opinions play a crucial role in understanding the sentiments towards the pandemic. In this study, Turkish tweets on Covid-19 topic were collected from March 2020 to January 2021 and labelled as positive, negative, or neutral in terms of sentiment using BERT which is a pre-trained text classifier model. Using this labelled dataset, a set of experiments were carried out with SVM, Naive Bayes, K-Nearest Neighbors, and CNN-LSTM model machine learning algorithms for binary and multi-class classification tasks. Results of these experiments have shown that CNN-LSTM model outperforms other machine learning algorithms which are used in this study in both binary classification and multi-class classification tasks.
Keywords : Duygu Analizi, Türkçe Twitter, Sınıflandırma, LSTM

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025