IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Konya Mühendislik Bilimleri Dergisi
  • Volume:11 Issue:3
  • DETERMINING THE MOST POWERFUL FEATURES IN THE DESIGN OF AN AUTOMATIC SLEEP STAGING SYSTEM

DETERMINING THE MOST POWERFUL FEATURES IN THE DESIGN OF AN AUTOMATIC SLEEP STAGING SYSTEM

Authors : Seral ÖZŞEN, Yasin KOCA, Gülay TEZEL, Sena ÇEPER, Serkan KÜÇÇÜKTÜRK, Hülya VATANSEV
Pages : 783-800
Doi:10.36306/konjes.1073932
View : 37 | Download : 43
Publication Date : 2023-09-01
Article Type : Research Paper
Abstract :Spending too much time on manual sleep staging is tiring and challenging for sleep specialists. In addition, experience in sleep staging also creates different decisions for sleep experts. The search for finding an effective automatic sleep staging system has been accelerated in the last few years. There are many studies dealing with this problem but very few of them were conducted with real sleep data. Studies have been carried out on mostly processed and cleaned-ready data sets. In addition, there are few studies in which the data distribution in sleep stages is balanced insert ignore into journalissuearticles values(equal numbers of epochs from each stage are used);, and it is seen that the performance of these studies is quite low compared to other studies. When the literature studies are examined, there is a wide range of studies in which many features are extracted, many feature selection methods are used, many classifiers are applied and various combinations of these are available. For this reason, to determine the best-performing features and the most powerful features, 168 features were extracted from the real EEG, EOG, and EMG signals of 124 patients. These features were selected with 7 different feature selection methods, and classification was carried out with 4 classifiers. In general, the ReliefF feature selection method has performed best, and the Bagged Tree classifier has reached the highest classification accuracy of 67.92% with the use of nonlinear features.
Keywords : Automatic sleep staging, frequency analysis of EEG signals, sleep signal detection

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025