IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Konya Mühendislik Bilimleri Dergisi
  • Volume:12 Issue:2
  • MACHINE LEARNING AS A POWERFUL TOOL FOR PERFORMANCE PREDICTION AND OPTIMIZATION OF CONCENTRATED PHOT...

MACHINE LEARNING AS A POWERFUL TOOL FOR PERFORMANCE PREDICTION AND OPTIMIZATION OF CONCENTRATED PHOTOVOLTAIC-THERMOELECTRIC SYSTEM

Authors : Aminu Yusuf, Nevra Bayhan, Hasan Tiryaki, Sedat Balllikaya
Pages : 478-493
Doi:10.36306/konjes.1396648
View : 40 | Download : 27
Publication Date : 2024-06-01
Article Type : Research Paper
Abstract :Because there is a critical necessity to ensure the optimal operation of concentrated photovoltaic-thermoelectric (CPV-TE) systems, various optimization methods such as Paretosearch (PS), Multi-objective genetic algorithm (MOGA), and the hybrid Goal Attainment – Multi-objective genetic algorithm (GOAL-MOGA) are commonly employed. These approaches aim to enhance both the output power and energy efficiency of CPV-TE systems. By combining the Pareto fronts generated by MOGA and GOAL-MOGA, 19 distinct machine learning (ML) algorithms were trained. The findings demonstrate that the Artificial Neural Network (ANN) ML algorithm outperforms others, displaying an average prediction error of 0.0692% on the test dataset. In addition to its prediction capability, the ANN-based ML model can be viewed as an optimization model since it produces optimized outputs similar to those from MOGA and GOAL-MOGA. The ANN-based ML algorithm performs better when trained on a combined dataset from both MOGA and GOAL-MOGA compared to using either MOGA or GOAL-MOGA alone. To enhance the optimization capability of the ANN-based ML algorithm further, more Pareto fronts from other optimization techniques can be added.
Keywords : Concentrated Photovoltaic, Thermoelectric Module, Machine Learning, Optimization, Prediction

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025