IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:13 Issue:3
  • FPGA implementation of deep learning model utilizing different normalization algorithms for COVID-19...

FPGA implementation of deep learning model utilizing different normalization algorithms for COVID-19 diagnosis

Authors : Merve Zirekgür, Barış Karakaya
Pages : 905-916
Doi:10.28948/ngumuh.1427827
View : 34 | Download : 38
Publication Date : 2024-07-15
Article Type : Research Paper
Abstract :Normalization is utilized to remove outliers from the dataset and address network bias. In this research, Mean-Variance-Softmax-Rescale (MVSR) and Min-Max normalizations are employed in various combinations for the diagnosis of COVID-19 using a Convolutional Neural Network (CNN)-based Deep Learning (DL) model, aimed at enhancing network accuracy. To accomplish this, the CNN model is developed within the Google Colab environment and trained using a publicly available dataset consisting of chest X-ray images related to COVID-19. The dataset is normalized using different combinations of the MVSR and Min-Max normalization algorithms to compare model accuracy. Each normalized dataset is used for model training, and subsequently, each trained model has been saved as a .h5 file and loaded into the Kria KV260 Vision AI Starter Kit FPGA for the testing phase. The most accurate results are obtained when MVSR and Min-Max normalizations are applied simultaneously. This high-performing scenario is re-evaluated with COVID-19 and normal X-ray images on FPGA configuration. Experimentally, the highest accuracy is achieved in real-time with the MVSR+Min-Max scenario, reaching 93%. The model\'s precision, recall, and F1-Score values are determined as 0.91, 0.96, and 0.93, respectively.
Keywords : Yapay Zekâ, Derin Öğrenme, Görüntü İşleme, Normalizasyon

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025