IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
  • Volume:13 Issue:4
  • IoT-based fire detection: A comparative study of machine learning techniques

IoT-based fire detection: A comparative study of machine learning techniques

Authors : Ahmet Aytuğ Ayrancı, Burcu Erkmen
Pages : 1298-1307
Doi:10.28948/ngumuh.1444349
View : 75 | Download : 141
Publication Date : 2024-10-15
Article Type : Research Paper
Abstract :Fires that cannot be detected quickly become uncontrollable. The fires that start to spread uncontrollably pose a significant danger to humans and natural life. Especially in public and crowded areas, fires can lead to possible loss of life and massive property damage. Because of this, it is necessary to detect fires as accurately and quickly as possible. Smoke detectors used with Internet of Things (IoT) technology can exchange data with each other. In this study, data collected from two different types of IoT-based smoke detectors were processed using machine learning algorithms. The k-Nearest Neighbor (k-NN), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Network, Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), and Logistic Model Tree (LMT) algorithms were used. The data obtained from the smoke detectors were processed using machine learning algorithms to create a highly successful model design. The aim of the study is to design an artificial intelligence-based system that enables the early detection of fires occurring both indoors and outdoors.
Keywords : Makine Öğrenmesi, Yangın Tespit Sistemi, IoT Tabanlı Sistemler, K Katlı Çapraz Doğrulama

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025