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ABSTRACT 
 
 

This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial 
load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the 
optimum controller parameters by minimizing the sum of the integral of the squared error and the squared 
controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to 
form the intervals for the controller parameters in which the population to be formed. The results obtained from 
the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. 
Comparatively better results are obtained in the genetic algorithm case. 
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GENETİK ALGORİTMA KULLANILARAK PID KONTROLCÜ KAZANÇLARININ 
OPTİMUM AYARLANMASI 

 
 

ÖZET 
 
 

Makale, bir dişli kutusuyla tahrik edilen ataletli bir kütlenin kontrolünde kullanılacak PID kazançlarının 
optimum ayarlanmasına ait bir metodu sunar. Özellikle yöntem, hata kareleriyle kontrolcü çıkışının kararlı 
haldeki değeri farkının karesi toplamının integralini mizimize ederek optimum kontrolcü parametrelerini 
tanımlamak için genetik algoritmaları kullanır. Makale, popülasyonun oluşturulacağı kontrolcü parametre 
aralığını oluşturmak için, Ziegler-Nichols yönteminin önerdiği değerlerin kullanımını önerir. Genetik 
algoritmalardan elde edilen sonuçlar ile Ziegler-Nichols sonuçları hem tablolar hem de grafikler şeklinde 
karşılaştırılmıştır. Genetik algoritmalar kullanıldığında daha iyi sonuçlar elde edilmiştir. 
 
Anahtar Kelimeler :  
 
 

1. INTRODUCTION 
 
 

At the beginning of the new millennium, PID 
controllers continue to be the main components of 
the industrial control applications. New methods 
were developed through the improvement of the 
shortcomings of PID controllers in the last century. 
However, because of their simple and useful nature, 
they still present powerful solutions to the industrial 
control processes (Åström et al., 2001). 

 
It is certainly one of the most important topics in the 
design of PID controllers is the adjustment of 
controller parameters according to a certain tuning 
criteria. It is beyond the scope of this paper to cite 
all the investigations in the literature on the tuning of 
PID controllers, however some of these methods 
were included here to give an idea to the reader. For 
example, the Ziegler-Nichols formulation is a 
classical tuning method which found a wide range of 
applications in the controller design process. 
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However, computing the gains does not always give 
best results because the tuning criteria presume a 
one-fourth reduction in the first two-peaks 
(Goodwin et al., 2001). Hence, the industrial 
controllers designed with this method should be 
tuned further before a use (Wu and Huang, 1997).  
Another approach in the design of controllers is the 
frequency response techniques for tuning the 
controller parameters for optimum gain and phase 
margins (Åström and Hägglund, 1984; Ho et al., 
1999; Wang and Shao, 2000).  The magnitude 
optimum multiple integration tuning method 
(Vrancic et al., 1999; Vrancic et al.,  2001) was also 
used to get a non-oscillatory closed-loop response. 
In the last decade, artificial intelligence applications 
were also introduced to the PID controllers. 
Particularly, the fuzzy (He et al., 1993; Misir et al.,  
1996; Blanchett et al.,  2000), the neuro-fuzzy (Chen 
and Linkens, 1998), the fuzzy-genetic 
(Bandyopadhyay et al., 2001), and the neuro-genetic 
(Lima and Ruano, 2000) approaches have been 
utilized. 
 
In this study, a simple effective method is developed 
to optimally tune PID controller gains using both 
Ziegler-Nichols (ZN) and Genetic Algorithms (GA). 
Since the determination of the lower and upper 
bounds for the PID parameter populations is difficult 
without making a large number of experiments  

(Grefenstette, 1986) in GA, ZN rules can easily be 
used to obtain the vicinity of the proportional, 
integral and derivative gains. Therefore, the ranges 
are initially defined from ZN rules. Then, these 
parameters are tuned optimally with respect to the 
objective function stated as “sum of the integral of 
the squared error and the squared controller output 
deviated from its steady state value” (Wilton, 1999). 
The main advantage of using genetic algorithms in 
the tuning of controllers rather than using ZN rules 
is the adaptability to any constraints desired by a 
designer. Other advantages include–but not limited 
to- their ease to be used in linear or nonlinear, and 
continuous or discrete systems, or any combination 
of them. According to the results presented in this 
study, better results were obtained by using GA 
compared with the method using ZN in terms of 
both step response and controller output.  

 
 

2. MATHEMATICAL MODEL 
 
 

The physical system to be controlled is composed of 
an inertial load driven by a DC motor through a gear 
box with a reduction ratio of N: 1. The schematic 
illustration of the system is presented in Figure 1. 
The system is to integrate a PID controller in a 
closed loop with a unity feedback. 
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Figure1. A DC motor driven load 
 
 
The armature equation can be written using 
Kirchhhoff’s voltage law as, 
 

Ri
dt
diLE)t(v ++= ,                                                (1) 

 
Where v is the armature voltage, E is the back 
electromotive force (e.m.f.) generated by the 
armature winding, L is the inductance of the 

armature winding, R is the resistance of the 
armature, and i is the armature current. The back 
e.m.f. is directly related to the motor speed, and 
hence 
 

ω= eKE             (2) 
 
Where Ke is the coefficient of e.m.f., and is taken as 
0.2 V.s/rad and ω the motor angular speed (rad/sec). 
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Defining the load angular speed as Ω (rad/s), the 
speed ratio can be written as 
 

Ω
ω

=N                            (3) 

 
The armature current which is proportional to the 
motor torque TM can be written as 
 

M
t

T
K

1
i =               (4) 

 
Where Kt for the motor under investigation is 0.2 
N.m/A. The motor torque TM can be written from 
the balance between the power required by the load 
and that supplied from the motor as 
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M           (5) 

 
Combining the equations (4) and (5), and plugging 
the current expression and its time derivative into 
the equation (1) result in a differential equation 
describing the input-output relation of the above 
system. Using the parameter values listed below 
(Fraser and Milne, 1994), one can obtain the 
differential equation describing the system as 
 

V1059.0029.4
dt
d382.52dt

2d
=Ω+

Ω
+

Ω          (6) 

 
and the transfer function as 
 

029.4s382.5s
1059.0

)s(V
)s()s(G 2 ++
=

Ω
=                        (7) 

 
Where the parameter values are shown in Table 1. 
 
 
 
Table 1. Descriptions and Values for the Parameters 
Used in the Formulations  

Description Symbols Units Numerical 
Values 

Motor armature 
inertia Jm kg.m² 0.1 

Armature resistance R ohms 0.5 
Armature inductance L H 0.1 
Motor bearing 
friction B1 N.m.s/rad 0.05 

Load bearing friction B2 N.m.s/rad 200 
Load inertia JL kg.m² 800 
Gear ratio Kd - 100/1 
Transmission 
efficiency η - 0.90 

 
 

3. DESIGN OF A PID CONTROLLER 
 
 

A schematic of a block diagram representing a 
simple single input single output system with a 
negative unity feedback is shown in Figure 2. 
 
 u(s) e(s) 

- 

+
R(s) Y(s) C(s G(s) 

 

Figure 2. A block diagram representing a SISO 
system 
 
The PID controller transfer function relating the 
error e(s) and the controller output u(s) is given as, 
 

)sT
sT

11(K)s(C d
i

P ++=                         (8) 

 
Where, Ti and Td are the reset and the derivative 
times, respectively. The first term in the Eqn. 8 
represents proportionality effect on the error signal, 
whereas the second and the third represent the 
integral and the derivative effects. The reader should 
refer to the references representing the details of the 
controller parameter selection such as (Fraser and 
Milne, 1994; Goodwin et al.,  2001). 
 
One of the most effective ways for describing the 
selection of controller gains is to use open loop step 
response as suggested by Ziegler-Nichols. However, 
this method intends to have a ratio of 4:1 for the first 
and second peaks in the closed loop response curve, 
which results in an oscillatory response (Goodwin et 
al., 2001). Since the optimum settings for this 
controller are desired, these parameter settings 
provide designers an excellent starting point for the 
parameter tuning.  
 
As a first step, the unit step response of the system 
(Eqn. 7) is obtained (see Figure 3). The parameters 
required for this study can easily be found using this 
response as suggested by Ziegler-Nichols. The dead 
time and the time constant are respectively found to 
be T1= 0.1 s and T2 = 1.9 s, and the controller 
parameters found from the Ziegler-Nichols rules 
were presented in Table 2. 
 
Table 2. Controller parameters defined from two 
methods 

 KP Td (sec) Ti (sec) 
Ziegler-Nichols 824.43 0.05 0.2 
Genetic Algorithm 397.3 0.13 0.58 
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Figure 3. Open loop step response of the system 
 
 

4. OPTIMUM TUNING 
 
 

In the design of PID controllers, Ziegler-Nichols 
settings give an oscillatory response of the system; 
hence the parameters found by this method cannot 
be implemented in the designs as computed. 
However, it can be used with the genetic algorithm 
to form possible interval for the controller parameter 
set. Since determining precise intervals for these 
gains have not been developed yet, it is wise to use 
these gains as the first step towards tuning the 
controller. For example, the lower and upper bounds 
for the design parameters can be formed around the 
values found from Ziegler-Nichols method, such as 
one-third for lower bound and three-fold for the 
upper bound 
 

as ]K3  ,
3

K[K P
P

P ∈ , ]T3  ,
3
T[T i

i
i ∈ , and 

]T3   ,
3

T[T d
d

d ∈ . 

 
One of the most commonly used methods in tuning 
of controller gains is to minimize the integral of the 
squared error due to a unit step change in the 
reference input. This tuning, however, may lead to 
excessive controller output swings that cause the 
system disturbances. Another preferred method is to 
minimize the integral of the squared error and the 
squared controller output deviation from its final 
value ∞u , simultaneously. 
 

∫
∞

∞−+=
0

22
c

2 dt])u)t(u(A)t(e[J   (9) 

 
Where Ac is a weighting parameter providing an 
adjustment in between the squared controller input 

and output difference, which has a desirable effect 
on the robustness and overshoot. The input error is 
relative to reference input, whereas the output error 
is due to its steady-state output (Wilton, 1999). 
 
The objective function given above was minimized 
by a genetic algorithm coded in MATLAB® using 
Goldberg’s (1989) algorithm. A constant population 
size of 30 with a string length of 30 was used in the 
GA by using a crossover probability, Pc, of 0.001, 
and a mutation probability rate, Pm, of 0.002. The 
optimized parameters were presented in Table 2. 

 
 

5. RESULTS AND DISCUSSION 
 
 

In this study, a mathematical model of a dc motor 
driven inertial load with a gearbox was developed 
and simulated both to design a PID controller and to 
tune it. The Ziegler-Nichols rules were used to form 
the intervals for the design parameters in genetic 
algorithms to tune the controller by minimizing an 
objective function described in the previous sections. 
 
The controller gains were computed by using both 
the Zeigler-Nichols rules and the genetic algorithms. 
The gains found from both methods were listed in 
Table 2. Since driving conclusions from the gains 
was not trivial, step responses were drawn for each 
case and commonly accepted performance criteria 
such as overshoot and settling times were computed 
for the comparisons. Step responses and controller 
outputs for the two designs were presented in the 
Figure 4 and 5. It is clearly shown in the figures that 
the genetic optimum (GA) solutions (present) are 
less oscillatory than those of Ziegler-Nichols (Z-N) 
design in both step response and controller output. 
Although a comparatively smaller rise time (Tr) and 
settling time (Ts) were obtained from Ziegler-
Nichols, genetic algorithm solution had a very small 
overshoot (OS) with respect to the final value on the 
step steady-state. These results were presented in 
Table 3. In conclusion, superior results were 
obtained in terms of system performance and 
controller output by using genetic algorithms for 
tuning PID controllers when these values compared 
on the tables and figures. 
 
Table 3. Response Characteristics of the System for 
a Unit Step 

 Overshoot (%) Tr (sec) Ts (sec) 
Ziegler-Nichols % 58 0.13 1.60 
Genetic 
Algorithm % 21 0.29 1.68 
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Figure 4. Closed loop unit step response of the 
system with the controllers 
 
 

 
 

Figure 5. Controller outputs for the system with the 
controllers 
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