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Abstract 

In this paper, we concentrate on nonlinear functional dynamic equations of the 

form 

𝒙∆(𝒕) = 𝒂(𝒕)𝒙(𝒕) + 𝒇(𝒕, 𝒙(𝒕)),   𝒕 ∈ 𝕋 

on time scales and study ℎ-stability, which implies uniform exponential 

stability, uniform Lipschitz stability, or uniform stability in particular cases. In 

our analysis, we use an alternative variation of parameters, which enables us to 

focus on a larger class of equations since the dynamic equations under the 

spotlight are not necessarily regressive. Also, we establish a linkage between 

uniform boundedness and ℎ-stability notions for solutions of dynamic equations 

under sufficient conditions in addition to our stability results. 

 

 
1. Introduction 

 

The theory of time scales, which was initiated by S. 

Hilger in 1988 (see [1]), has taken noticeable attention 

in pure and applied mathematics in the last decades. 

The main objective of this theory is three-fold: 

unification, extension, and discretization of 

conventional calculus.  Since the theory of time scales 

avoids the disjoint study of continuous and discrete 

mathematical structures, it has become a hot topic for 

researchers, and time scale analogs of existing  

theories have been reconstructed on hybrid time 

domains, namely time scales. Furthermore, recent 

studies in this field indicate that it is possible to 

establish a linkage between dynamical equations on 

time scales and other disciplines such as economics, 

physics, biology, or engineering sciences. We refer to 

readers [2]-[10] in order to polish the application 

potential of time scales in different fields. 

 Stability theory of differential and difference 

equations is one of the landmark topics of qualitative 

theory of dynamical equations in applied mathematics. 

Since the theory of time scales enables researchers to 

analyze differential and difference equations in a joint 

framework, researchers established a unified stability 

                                                           

*Corresponding author: haliscan.koyuncuoglu@ikcu.edu.tr            Received: 18.10.2021, Accepted: 21.03.2022 

theory for dynamic equations defined on time scales 

for various stability types.  By a quick literature 

review, one may easily find pioneering papers on the 

stability, asymptotic stability, or exponential stability 

of dynamic equations on time scales (see [11]-[15]). 

However, it should be pointed out that the stability 

analysis of nonlinear equations is grueling, especially 

when the equation is constructed on arbitrary time 

domains. For example, it is challenging and 

sometimes impossible to design a controller for a 

nonlinear system that ensures exponential stability. 

Hence, the utilization of the ℎ-stability notion has 

opened a new window into stability analysis by providing a 

generalized approach. The concept of ℎ-stability is first 

introduced by M. Pinto in [16] as an extension of 

notions of exponential stability and uniform Lipschitz 

stability. As it is discussed in [17], the following 

relationship holds between the well-known stability 

types 

ℎ -stability ⇒ uniform exponential stability ⇒ uniform 

Lipschitz stability ⇒ uniform stability. 
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As a consequence of the above-given implications, 

this topic has taken prominent attention in a small 

duration of time, and mathematicians have studied 

ℎ-stability for solutions of dynamic equations on 

continuous, discrete, and hybrid time domains. We 

refer to readers [16]-[25] as inspiring papers on this 

topic. 

In this research, we focus on the following 

nonlinear abstract dynamic equation defined on an 

arbitrary time scale 𝕋,  

 

𝑥∆(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ 𝕋,           (1) 

 

and obtain a stability analysis based on the ℎ-stability 

concept. The abstract equation (1) has tremendous 

application potential, and its particular forms can be 

found in numerous papers in different fields. For 

example, one may easily observe that equation (1) 

turns into 

 A single artificial effective neuron with dissipation 

model 

 

𝑥′(𝑡) = −𝑎(𝑡)𝑥(𝑡) + b(𝑡) tanh(𝑥(𝑡)) + 𝐼(𝑡), 

for all  𝑡 ∈ ℝ, 

 Continuous-time Lasota-Wazewska model on the 

survival of red blood cells 

 

𝑥′(𝑡) = −𝑟𝑥(𝑡)+ η(𝑡)𝑒−𝛾𝑥(𝑡),  

for all  𝑡 ∈ ℝ, 

 Discrete-time Clark’s model in population 

dynamics without delay 

 

∆𝑥𝑛 = (𝛾 − 1)𝑥𝑛 + 𝐹(𝑥𝑛), 

for all  𝑡 ∈ ℕ0, 

under particular choices of 𝑎, f, and 𝕋 (see [26]-[28], 

respectively). From our mathematical point of view, it 

is reasonable to study the abstract equation (1) on 

arbitrary time scales since the obtained stability results 

might be used for several real-life models under 

sufficient conditions. The analogy between the 

nonlinear abstract dynamic equation (1) and the 

specific nonlinear models in the applied sciences 

reveals the application potential of outcomes of the 

paper on a wide range of disciplines. Moreover, we 

shall highlight that the concept of regressivity is 

essential for the theory of dynamical equations on time 

scales since it is inevitable to define generalized 

exponential function. By regressiveness of a dynamic 

equation 

 

𝑥∆(𝑡) = 𝑎(𝑡)𝑥(𝑡),   𝑡 ∈ 𝕋, 

 

we mean 1 + 𝜇(𝑡)𝑎(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋𝑘  where 

𝜇 and the set 𝕋𝑘  are defined as in the next section. 

Even though every function is regressive when 𝕋 = ℝ, 

regressivity becomes a restrictive condition for classes 

of dynamic equations when 𝕋 has discrete structures. 

This issue is pointed out by the authors of [21], and 

their outcomes indicate that without regressivity 

assumption, it is still possible to study ℎ-stability for 

dynamic equations on time scales. In this manuscript, 

we aim to study ℎ-stability for scalar-valued dynamic 

equations on time scales without assuming 

regressivity. Motivated by the papers [29]-[32], we use 

a regressive auxiliary function to invert an alternative 

variation of parameters to achieve this task. Thus, 

t h e  regressivity condition becomes redundant for 

the main equation of the manuscript. Furthermore, 

our approach does not only provide an alternative 

tool for ℎ-stability analysis but also improves the 

current literature since it enables us to construct 

comparative results regarding the ℎ-stability and 

boundedness for dynamic equations on time scales. 

The organization of the paper is as follows: 

The next section is devoted to preliminaries of time 

scales calculus for the readership. In Section 3, we 

present the main results of the manuscript, and in the last 

section, we provide an elaborative conclusion. 

2. Time Scales Essentials 

 

We give the following introductory information for the 

readers who are not familiar with time scale calculus. 

The following definitions, results, and examples are 

given due to the pioneering book [33]. 

A time scale denoted by 𝕋, which inherits the 

standard topology on ℝ, is an arbitrary, nonempty, 

closed subset of real numbers. We define the forward 

jump operator 𝜎: 𝕋 → 𝕋 by 𝜎(𝑡) ≔ inf{𝑠 ∈ 𝕋, 𝑠 >

𝑡}, while the backward jump operator 𝜌: 𝕋 → 𝕋 is 

defined as 𝜌 ≔ sup{𝑠 ∈ 𝕋, 𝑠 < 𝑡} for 𝑡 ∈ 𝕋. Also, 

the graininess (step-size) function 𝜇(𝑡):𝕋 → [0,∞) 

is given by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡. A point 𝑡 ∈ 𝕋 is said 
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to be right-dense if 𝜇(𝑡) = 0 or equivalently 𝜎(𝑡) =

𝑡; otherwise, it is called right-scattered. In a similar 

fashion, a point 𝑡 ∈ 𝕋 is said to be left-dense if 

𝜌(𝑡) = 𝑡, or else it is called left-scattered. By the 

notation [𝑠, 𝑡)𝕋, we mean the intersection [𝑠, 𝑡) ∩ 𝕋, 

and the intervals [𝑠, 𝑡]𝕋, (𝑠, 𝑡)𝕋, and (𝑠, 𝑡]𝕋 can be 

defined in the same manner. A function 𝑓: 𝕋 → ℝ is 

said to be rd-continuous if it is continuous at right 

dense points and its left-sided limit exists at left dense 

points. Besides, 𝐶𝑟𝑑 stands for all rd-continuous 

functions defined on 𝕋. The set 𝕋𝑘 is given in the 

following way: If 𝕋 has a left-scattered maximum 𝑚, then 

𝕋𝑘 = 𝕋− {𝑚}; otherwise  𝕋𝑘 = 𝕋.  

Delta-derivative of a function 𝑓: 𝕋 → ℂ at 𝑡 ∈

𝕋 is given by 

 

𝑓∆(𝑡) =

{
 
 

 
 lim
𝑠→𝑡

𝑓(𝑡) − 𝑓(𝑠)

𝑡 − 𝑠
, 𝜇(𝑡) = 0

𝑓(𝜎(𝑡)) − 𝑓(𝑡)

𝜇(𝑡)
, 𝜇(𝑡) > 0

 

 

provided the limit exists. For 𝑓 ∈ 𝐶𝑟𝑑 and 𝑠, 𝑡 ∈ 𝕋 we 

define delta-integral as 

 

∫𝑓(𝜏)∆𝜏 = 𝐹(𝑡) − 𝐹(𝑠)

𝑡

𝑠

, 

 

where 𝐹∆ = 𝑓 on 𝕋𝑘.  

Table 1 illustrates the main characteristics of 

three essential time scales.   

A function 𝑓: 𝕋 → ℝ is said to be regressive if 

1 + 𝜇(𝑡)𝑓(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋𝑘  and 𝑓 is called 

positively regressive if 1 + 𝜇(𝑡)𝑓(𝑡) > 0 for all 𝑡 ∈

𝕋𝑘 . The notations ℛ and ℛ+ indicate the set of all 

regressive functions, and the set of all positively 

regressive functions, respectively. For ℎ > 0, we 

introduce ℂℎ ≔ {𝑧 ∈ ℂ: 𝑧 ≠ −1/ℎ}, 𝕁ℎ ≔ {𝑧 ∈

ℂ:−𝜋/ℎ < 𝐼𝑚(𝑧) < 𝜋/ℎ}, and ℂ0 ≔ 𝕁0 ≔ ℂ. For 

ℎ ≥ 0 and 𝑧 ∈ ℂℎ, the cylinder transformation 

𝜉ℎ: ℂℎ → 𝕁ℎ is defined by 

 

𝜉ℎ(𝑧) ≔ {
𝑧,                 ℎ = 0

1

ℎ
𝐿𝑜𝑔(1 + 𝑧ℎ), ℎ > 0

 

Then the unified exponential function 𝑒𝑝(. , 𝑠) on a time 

scale 𝕋 is defined by 

 

𝑒𝑝(𝑡, 𝑠) ≔ exp{∫𝜉𝜇(𝜏)

𝑡

𝑠

(𝑝(𝜏))∆𝜏}  for  𝑠, 𝑡 ∈ 𝕋.  

 

Moreover, the exponential function 𝑒𝑝(. , 𝑠) is the 

unique solution to the initial value problem 

 

{
𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡),   𝑡 ∈ 𝕋𝑘

𝑥(𝑠) = 1
, 

 

and if 𝑝 ∈ ℛ+, then 𝑒𝑝(𝑡, 𝑠) > 0 for all  𝑡 ∈ 𝕋𝑘 .  

In Table 2, we give some examples of 

exponential functions on specific time scales. In the 

sequel, we present the following results as groundwork 

for the outcomes of the manuscript. 

Theorem 1 (Variation of Constants [33, Theorem 

2.77]). Let 𝑡0 ∈ 𝕋 and 𝑥0 ∈ ℝ. The unique solution of 

the regressive initial value problem 

 

{
𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡) + 𝑓(𝑡)

𝑥(𝑡0) = 𝑥0
 

 

is given by 

 

𝑥(𝑡) = 𝑒𝑝(𝑡, 𝑡0)𝑥0 +∫ 𝑒𝑝(𝑡, 𝜎(𝜏))𝑓(𝜏)∆𝜏
𝑡

𝑡0

. 

 

Theorem 2 ([33, Theorem 6.1]). Let 𝑥, 𝑓 ∈ 𝐶𝑟𝑑 and  

𝑝 ∈ ℛ+. Then 

 

             𝑥∆(𝑡) ≤ 𝑝(𝑡)𝑥(𝑡) + 𝑓(𝑡) for all 𝑡 ∈ 𝕋 

 

implies  

 

𝑥(𝑡) ≤ 𝑥(𝑡0)𝑒𝑝(𝑡, 𝑡0) + ∫𝑒𝑝(𝑡, 𝜎(𝜏))𝑓(𝜏)∆𝜏,

t

𝑡0

 

for all 𝑡 ∈ 𝕋. 

Theorem 3 (Gronwall’s inequality [33, Theorem 

6.4]). Let 𝑥, 𝑓 ∈ 𝐶𝑟𝑑 and 𝑝 ∈ ℛ+, 𝑝 ≥ 0. Then 

 

𝑥(𝑡) ≤ 𝑓(𝑡) + ∫𝑥(𝜏)𝑝(𝜏)∆𝜏

𝑡

𝑡0

   

for all 𝑡 ∈ 𝕋 implies  
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𝑥(𝑡) ≤ 𝑓(𝑡) + ∫𝑒𝑝(𝑡, 𝜎(𝜏))𝑓(𝜏)𝑝(𝜏)∆𝜏  

𝑡

𝑡0

 

for all 𝑡 ∈ 𝕋.

Table 1. Three essential time scales 

𝕋 ℝ ℤ 𝑞ℤ ∪ {0}, 𝑞 > 1 

𝜌(𝑡) 𝑡 𝑡 − 1 
𝑡

𝑞
 

𝜎(𝑡) 𝑡 𝑡 + 1 𝑞𝑡 
𝜇(𝑡) 0 1 (𝑞 − 1)𝑡 

𝑓∆(𝑡) 𝑓′(𝑡) ∆𝑓(𝑡) 𝐷𝑞𝑓(𝑡) =
𝑓(𝑞𝑡) − 𝑓(𝑡)

(𝑞 − 1)𝑡
 

∫𝑓(𝜏)∆𝜏

𝑡

0

 ∫𝑓(𝜏)𝑑𝜏

𝑡

0

 ∑𝑓(𝜏)

𝑡−1

𝜏=0

, (0 < 𝑡) 
∫𝑓(𝜏)𝑑𝑞𝜏

𝑡

1

= (𝑞 − 1)∑ 𝑞𝜏𝑓(𝑞𝜏), 𝑡 = 𝑞𝑛
𝑛−1

𝜏=0

 

Table 2. Examples of exponential functions 

𝕋 ℝ ℤ ℎℤ     𝑞ℕ0 
1

𝑛
 ℤ 

𝑒𝛼(𝑡, 𝑡0) 𝑒𝛼(𝑡−𝑡0) (1 + 𝛼)𝑡−𝑡0 (1 + 𝛼ℎ)
(𝑡−𝑡0)
ℎ  

∏ [1+ (𝑞 − 1)𝛼𝑠]

𝑠∈[𝑡0,𝑡)

 

 

(1 +
𝛼

𝑛
)
𝑛(𝑡−𝑡0)

 

 

  

3. Main Results 

 

We start this section by bringing the abstract functional 

dynamic equation (1) into the spotlight which is 

defined as 

 

𝑥∆(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ 𝕋 

 

where 𝑎: 𝕋 → ℝ, 𝑓:𝕋 × ℝ → ℝ belong to 𝐶𝑟𝑑 and 

𝑓(𝑡, 0) = 0. 
Firstly, we introduce the notion of ℎ-

stability in the light of [20, Definition 2.2]. 

Definition 1. The nonlinear dynamic equation (1) is 

said to be an ℎ-equation if there exist a positive 

function ℎ: 𝕋 → ℝ, a constant 𝑐 ≥ 1, and 𝛿 > 0 such 

that 

 

|𝑥(𝑡, 𝑡0, 𝑥0)| ≤ 𝑐|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
, 𝑡 ≥ 𝑡0 

 

if |𝑥0| < 𝛿. Moreover, if ℎ is a bounded function, then 

(1) is called ℎ-stable. 

Remark 1. Since the time scale exponential function 

𝑒𝑝(. , 𝑠) can be regarded as a solution of the 

homogeneous dynamic equation 𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡), 
then the solution of the regressive initial value 

problem 

 

{
𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡),   𝑡 ∈ 𝕋𝑘

𝑥(𝑡0) = 𝑥0
                    (2) 

 

is ℎ-stable if there exist a positive, bounded function 

ℎ: 𝕋 → ℝ and a constant 𝑐 ≥ 1 such that 

 

|𝑒𝑝(𝑡, 𝑡0)| ≤ 𝑐
ℎ(𝑡)

ℎ(𝑡0)
, 𝑡 ≥ 𝑡0.                   (3) 

 

Additionally, we provide the following 

definition for constructing the last result of the 

manuscript, which establishes a linkage between 

boundedness and ℎ-stability. 

Definition 2 ([34]).  A solution 𝑥 to a dynamical 

equation 

 

𝑥∆(𝑡) = 𝑓(𝑡, 𝑥) 
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is said to be globally uniformly bounded if for every 

𝛿 > 0, there exists 𝑐: = 𝑐(𝛿 ) such that |𝑥(𝑡0)| ≤ 𝛿 

implies |𝑥(𝑡)| ≤ 𝑐 for all 𝑡, 𝑡0 ∈ 𝕋 with 𝑡 ≥ 𝑡0 ≥ 0. 
 We present the following lemma due to [32, 

Lemma 3.1]. 

Lemma 1. The nonlinear dynamic equation (1) has a 

solution 𝑥 if and only if 

 

𝑥(𝑡) = 𝑥(𝑡0)𝑒𝑝(𝑡, 𝑡0) + ∫ 𝑒𝑝(𝑡, 𝜎(𝜏)) ([𝑎(𝜏) −
𝑡

𝑡0

                                            𝑝(𝜏)]𝑥(𝜏) + 𝑓(𝜏, 𝑥(𝜏))) ∆𝜏,                                    

(4) 

 

for all 𝑡 ∈ [𝑡0,∞)𝕋, where 𝑝: [𝑡0, ∞)𝕋 → ℝ is 

regressive. 

Now, we are ready to give the first stability 

result of the manuscript. 

Theorem 4. Consider the following initial value 

problem 

 

{
𝑥∆(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ 𝕋

𝑥(𝑡0) = 𝑥0
             (5) 

 

where 𝑎, 𝑓 ∈ 𝐶𝑟𝑑, 𝑓(𝑡, 0) = 0, and 𝑎 is not necessarily 

regressive. Also, we introduce the following auxiliary 

regressive initial value problem 

 

{
𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡)

𝑥(𝑡0) = 𝑥0
.                                (6) 

 

Assume that the following conditions hold: 

C1: Solution of (6) is ℎ-stable. 

C2: There exists a function 𝑔 such that 

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝑔(𝑡)|𝑥 − 𝑦|. 

C3: There exists 𝑀 > 0 such that 

∫
ℎ(𝜏)

ℎ(𝜎(𝜏))

𝑡

𝑡0

(|𝑎(𝜏) − 𝑝(𝜏)| + 𝑔(𝜏))∆𝜏 ≤ 𝑀. 

Then, (5) is ℎ-stable. 

Proof. Suppose that conditions C1-C3 are satisfied. 

By (4), we obtain the inequality 

|𝑥(𝑡)| ≤ |𝑥0||𝑒𝑝(𝑡, 𝑡0)| + ∫|𝑒𝑝(𝑡, 𝜎(𝜏))|

𝑡

𝑡0

(|𝑎(𝜏) 

−𝑝(𝜏)||𝑥(𝜏)| + |𝑓(𝜏, 𝑥(𝜏))|)∆𝜏. 

 

Then we use the condition C1 together with (3) and 

get 

|𝑥(𝑡)| ≤ c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
+ ∫c

ℎ(𝑡)

ℎ(𝜎(𝜏))

𝑡

𝑡0

(|𝑎(𝜏) 

−𝑝(𝜏)||𝑥(𝜏)| + |𝑓(𝜏, 𝑥(𝜏))|)∆𝜏 

 

            = c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
+ c

ℎ(𝑡)

ℎ(𝑡0)
∫

ℎ(𝑡0)

ℎ(𝜎(𝜏))

𝑡

𝑡0

(|𝑎(𝜏) 

−𝑝(𝜏)||𝑥(𝜏)| + |𝑓(𝜏, 𝑥(𝜏))|)∆𝜏 

 

            ≤ c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
+ c

ℎ(𝑡)

ℎ(𝑡0)
∫

ℎ(𝑡0)

ℎ(𝜎(𝜏))

𝑡

𝑡0

(|𝑎(𝜏) 

−𝑝(𝜏)||𝑥(𝜏)| + 𝑔(𝜏)|𝑥(𝜏)|)∆𝜏 

 

by the adoption of C2 in the last step. 

Next, we set 

 

𝑧(𝑡) = ∫
ℎ(𝑡0)

ℎ(𝜎(𝜏))
(|𝑎(𝜏) − 𝑝(𝜏)||𝑥(𝜏)|

𝑡

𝑡0

 

 

+𝑔(𝜏)|𝑥(𝜏)|)∆𝜏 
 

and observe 

 

𝑧∆(𝑡) =
ℎ(𝑡0)

ℎ(𝜎(𝑡))
(|𝑎(𝑡) − 𝑝(𝑡)||𝑥(𝑡)| + 𝑔(𝑡)|𝑥(𝑡)|) 

           ≤
ℎ(𝑡0)

ℎ(𝜎(𝑡))
[|𝑎(𝑡) − 𝑝(𝑡)| (c|𝑥0|

ℎ(𝑡)

ℎ(𝑡0)
 

+c
ℎ(𝑡)

ℎ(𝑡0)
𝑧(𝑡)) + 𝑔(𝑡) (c|𝑥0|

ℎ(𝑡)

ℎ(𝑡0)
 

+c
ℎ(𝑡)

ℎ(𝑡0)
𝑧(𝑡))] 

= c|𝑥0|
ℎ(𝑡)

ℎ(𝜎(𝑡))
(|𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡)) 
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           +(c
ℎ(𝑡)

ℎ(𝜎(𝑡))
(|𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡))) 𝑧(𝑡). 

 

Consequentially, we deduce the inequality 

 

𝑧∆(𝑡) ≤ φ(t)𝑧(𝑡) + 𝜓(𝑡), 

 

where 

 

𝜑(𝑡) = c
ℎ(𝑡)

ℎ(𝜎(𝑡))
(|𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡)),          (7) 

 

and  

 

𝜓(𝑡) = |𝑥0|𝜑(𝑡).                               (8) 

 

One may easily observe that 𝜑 ∈ ℛ+, and then 

Theorem 2 implies 

 

 𝑧(𝑡) ≤ 𝑧(𝑡0)𝑒𝜑(𝑡, 𝑡0) + ∫𝑒𝜑(𝑡, 𝜎(𝜏))𝜓(𝜏)

𝑡

𝑡0

∆𝜏 

              = ∫ 𝑒𝜑(𝑡, 𝜎(𝜏))𝜓(𝜏)
𝑡

𝑡0
∆𝜏                               (9) 

 

since 𝑧(𝑡0) = 0. If we write the inequality (9) 

explicitly, then we have 

 

 𝑧(𝑡) ≤ ∫c|𝑥0|
ℎ(𝜏)

ℎ(𝜎(𝜏))
(|𝑎(𝜏) − 𝑝(𝜏)|

𝑡

𝑡0

+  𝑔(𝜏)) 

 

exp( ∫ 𝜉𝜇(𝑠)(𝜑(𝑠))∆𝑠

𝑡

𝜎(𝜏)

)∆𝜏 

 

where  

 

𝜉𝜇(𝑡)(𝜑(𝑡)) =
1

𝜇(𝑡)
𝐿𝑜𝑔 (1 + 𝑐𝜇(𝑡)

ℎ(𝑡)

ℎ(𝜎(𝑡))
 

(|𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡))) 

 

when 𝜇 > 0, and 

 

𝜉𝜇(𝑡)(𝜑(𝑡)) = 𝑐
ℎ(𝑡)

ℎ(𝜎(𝑡))
(|𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡))  

 

when 𝜇 = 0. 

Here we get 

 

𝑧(𝑡) ≤ ∫c|𝑥0|
ℎ(𝜏)

ℎ(𝜎(𝜏))

𝑡

𝑡0

(|𝑎(𝜏) − 𝑝(𝜏)| + 𝑔(𝜏)) 

exp( ∫𝑐
ℎ(𝑠)

ℎ(𝜎(𝑠))
(|𝑎(𝑠) − 𝑝(𝑠)| + 𝑔(𝑠))∆𝑠

𝑡

𝜎(𝜏)

)∆𝜏 

 

which yields to  

 

|𝑥(𝑡)| ≤ c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
 

+c2|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
∫

ℎ(𝜏)

ℎ(𝜎(𝜏))
(|𝑎(𝜏) − 𝑝(𝜏)| +

𝑡

𝑡0

 

𝑔(𝜏))exp( ∫ 𝑐
ℎ(𝑠)

ℎ(𝜎(𝑠))
(|𝑎(𝑠) − 𝑝(𝑠)| +

𝑡

𝜎(𝜏)

 

𝑔(𝑠))∆𝑠)∆𝜏. 

 

By using C3, we write 

 

|𝑥(𝑡)| ≤ c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
+ c2|𝑥0|

ℎ(𝑡)

ℎ(𝑡0)
𝑀𝑒𝑐𝑀 

            = |𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
(c + c2𝑀𝑒𝑐𝑀) 

 

which shows 𝑥 is ℎ-stable. The proof is 

complete.                                                                            ⧠ 

Next, we present an inequality that is crucial 

for establishing a comparative stability result. 

Lemma 2 ([21, Lemma 3.25]). Suppose that 𝑚 ∈

𝐶𝑟𝑑(𝕋 × ℝ
+, ℝ) is non-decreasing in the second 

argument 𝑥 for each fixed 𝑡 ≥ 𝑡0 with the property 

 

𝑥(𝑡) − ∫𝑚(𝜏, 𝑥(𝜏))∆𝜏 ≤

𝑡

𝑡0

𝑦(𝑡) − ∫𝑚(𝜏, 𝑦(𝜏))∆𝜏

𝑡

𝑡0

, 

for 𝑡 ≥ 𝑡0 ∈ 𝕋 and 𝑥, 𝑦 ∈ 𝐶𝑟𝑑(𝕋,ℝ
+). If 𝑥(𝑡0) <

𝑦(𝑡0), then 𝑥(𝑡) < 𝑦(𝑡) for all 𝑡 ≥ 𝑡0 ∈ 𝕋. 

Theorem 5. Suppose that there exists a function 𝑘 ∈

𝐶𝑟𝑑(𝕋 × ℝ
+, ℝ+) so that 

 
|𝑓(𝑡, 𝑥)| ≤ 𝑘(𝑡, |𝑥|),                         (10) 



H. C. Koyuncuoğlu, N. Turhan Turan / BEÜ Fen Bilimleri Dergisi 11 (2), 459-468, 2022 

465 
 

 

where 𝑘 is increasing with respect to its second 

argument. We set 

 

𝑚(𝑡, 𝑥) = |𝑎(𝑡) − 𝑝(𝑡)|𝑥(𝑡) + 𝑘(𝑡, 𝑥(𝑡)),       (11) 

 

and also assume 𝑝 ∈ ℛ+. Consider the following 

auxiliary equation 

 

{
𝑢∆(𝑡) = 𝑝(𝑡)𝑢(𝑡) +𝑚(𝑡, 𝑢(𝑡))

𝑢(𝑡0) = 𝑢0
.                 (12) 

 

If (12) is ℎ-stable, then (5) is also ℎ-stable whenever 

𝑢0 = |𝑥0|. 

Proof. Suppose that the inequality (10) holds, and 

(12) is ℎ-stable. We fix 𝑢0 = |𝑥0| and observe that 

the function 𝑚 given in (11) is increasing with 

respect to its second term. By (4), (10), and (11), we 

have 

|𝑥(𝑡)| ≤ |𝑥0|𝑒𝑝(𝑡, 𝑡0)

+ ∫𝑒𝑝(𝑡, 𝜎(𝜏))(|𝑎(𝜏)

𝑡

𝑡0

− 𝑝(𝜏)||𝑥(𝜏)| + |𝑓(𝜏, 𝑥(𝜏))|) ∆𝜏 

            ≤ |𝑥0|𝑒𝑝(𝑡, 𝑡0)

+ ∫𝑒𝑝(𝑡, 𝜎(𝜏))(|𝑎(𝜏)

𝑡

𝑡0

− 𝑝(𝜏)||𝑥(𝜏)| + 𝑘(𝜏, |𝑥|)) ∆𝜏 

             ≤ |𝑥0|𝑒𝑝(𝑡, 𝑡0)

+ ∫𝑒𝑝(𝑡, 𝜎(𝜏))𝑚(𝜏, |𝑥(𝜏)|)

𝑡

𝑡0

∆𝜏, 

 

which yields to 

 

|𝑥(𝑡)| − ∫𝑒𝑝(𝑡, 𝜎(𝜏))𝑚(𝜏, |𝑥(𝜏)|)

𝑡

𝑡0

∆𝜏 

               ≤ |𝑥0|𝑒𝑝(𝑡, 𝑡0) 

              = 𝑢(𝑡) − ∫𝑒𝑝(𝑡, 𝜎(𝜏))𝑚(𝜏, |𝑢(𝜏)|)

𝑡

𝑡0

∆𝜏. 

Subsequently, we have |𝑥(𝑡)| < 𝑢(𝑡)  due to Lemma 2. 

Hence, 

 

|𝑥(𝑡)| < 𝑢(𝑡) ≤ 𝑐𝑢0
ℎ(𝑡)

ℎ(𝑡0)
= 𝑐|𝑥0|

ℎ(𝑡)

ℎ(𝑡0)
, 

 

and this proves our assertion.                                          ⧠ 

The following result focuses on boundedness 

and ℎ-stability. 

Theorem 6. Suppose that the auxiliary regressive 

initial value problem given in (6) 

 

{
𝑥∆(𝑡) = 𝑝(𝑡)𝑥(𝑡)

𝑥(𝑡0) = 𝑥0
 

 

is ℎ-stable with an increasing function ℎ. Also, 

consider the dynamic equation given in (5), which is 

 

{
𝑥∆(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0
 

 

with condition C2 of Theorem 4. Then, the solution of 

the nonlinear equation (5) is globally uniformly 

bounded whenever 

 

𝑒𝜅(𝑡, 𝑡0) ≤ 𝜔                           (13) 

 

where 

 

𝜅(𝑡) = |𝑎(𝑡) − 𝑝(𝑡)| + 𝑔(𝑡).            (14) 

 

Proof. Assume that (6) is ℎ-stable with an increasing 

function ℎ, and C2 and (13) hold.  In the light of 

(4) and C2, one may easily obtain the inequality 

 

|𝑥(𝑡)| ≤ |𝑥0||𝑒𝑝(𝑡, 𝑡0)| + ∫|𝑒𝑝(𝑡, 𝜎(𝜏))|(|𝑎(𝜏)

𝑡

𝑡0

 

−𝑝(𝜏)||𝑥(𝜏)| + |𝑓(𝜏, 𝑥(𝜏))|)∆𝜏            

 

           ≤ |𝑥0||𝑒𝑝(𝑡, 𝑡0)| + ∫|𝑒𝑝(𝑡, 𝜎(𝜏))|(|𝑎(𝜏)

𝑡

𝑡0

      

−𝑝(𝜏)||𝑥(𝜏)| + 𝑔(𝜏)|𝑥(𝜏)|)∆𝜏        
 

           ≤ c|𝑥0|
ℎ(𝑡)

ℎ(𝑡0)
+ ∫𝑐

ℎ(𝑡)

ℎ(𝜎(𝜏))
(|𝑎(𝜏)

𝑡

𝑡0

      

−𝑝(𝜏)||𝑥(𝜏)| + 𝑔(𝜏)|𝑥(𝜏)|)∆𝜏.        
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Hereby monotonicity of ℎ, we get 

 

ℎ−1(𝑡)|𝑥(𝑡)| ≤ c|𝑥0|ℎ
−1(𝑡0) 

+𝑐 ∫ℎ−1(𝜎(𝜏))(|𝑎(𝜏) − 𝑝(𝜏)|

𝑡

𝑡0

 

|𝑥(𝜏)|+𝑔(𝜏)|𝑥(𝜏)|)∆𝜏 
 

      ≤ c|𝑥0|ℎ
−1(𝑡0) 

+𝑐 ∫ℎ−1(𝜏)|𝑥(𝜏)|(|𝑎(𝜏) − 𝑝(𝜏)|

𝑡

𝑡0

+𝑔(𝜏))∆𝜏. 

(15) 

 

Then, we set 𝑢(𝑡) = ℎ
−1(𝑡)|𝑥(𝑡)| and rewrite (15) as 

follows: 

 

𝑢(𝑡) ≤ 𝑐𝑢(𝑡0) + 𝑐 ∫𝑢(𝜏)(|𝑎(𝜏) − 𝑝(𝜏)| + 𝑔(𝜏))

𝑡

𝑡0

∆𝜏. 

 

Here, Theorem 3 implies 𝑢(𝑡) ≤ 𝑐𝑢(𝑡0)𝑒𝜅(𝑡, 𝑡0), 

where 𝜅is as in (14). Then we have 

 

|𝑥(𝑡)| ≤ 𝑐
ℎ(𝑡)

ℎ(𝑡0)
𝑒𝜅(𝑡, 𝑡0)|𝑥0| ≤ 𝑐

∗
ℎ(𝑡)

ℎ(𝑡0)
|𝑥0|, 

 

for 𝑐∗ = 𝑐𝜔 ≥ 1. The proof is complete.                     ⧠ 

 

4. Concluding Comments 

 

This study focuses on functional dynamic equations of 

the form (1) on time scales and provides a detailed 

analysis regarding ℎ-stability. In the setup of the 

paper, an alternative variation of parameters formula 

is used via an auxiliary regressive function 𝑝. This 

approach does not only elicit a new point of view but 

also relaxes a compulsory condition, namely 

regressivity, from the dynamic equation of interest. 

Therefore, contrary to Theorem 1, we do not assume 

the regressiveness of the main equation for the 

inversion of the solution. 

This study consists of three main results. In 

Theorem 4 and Theorem 5, we propose sufficient 

conditions for ℎ-stability of (1) via an ℎ-stable and 

regressive auxiliary dynamic equation; for instance, 

see C1 of Theorem 4. Note that one may easily write 

the following identity for the generalized exponential 

function  

 

|𝑒𝑝(𝑡, 𝑡0)| = |𝑒𝑝(𝑡, 𝜃)||𝑒𝑝(𝜃, 𝑡0)| =
|𝑒𝑝(𝑡, 𝜃)|

|𝑒𝑝(𝑡0, 𝜃)|
 

 

 for 𝑡0 ≤ 𝜃 ∈ 𝕋, by utilizing [33, Theorem 2.36]. 

Then, ℎ-stability of the linear equation in (2) is 

straightforward by setting ℎ(𝑡) = |𝑒𝑝(𝑡, 𝜃)|, if 

𝑒𝑝(𝑡, 𝜃) is bounded. By [32, Remark 3.8] (see also [35, 

Example 1]), we have 𝑒𝑝(𝑡, 𝜃) → 0 as 𝑡 → ∞ for any 

negative-valued function 𝑝 satisfying |𝑝(𝑡)| ≤ 𝜂 for 

all 𝑡 ∈ 𝕋 where sup𝕋 = ∞ , η > 0 and −𝜂 ∈ ℛ+. 

This indicates 𝑒𝑝(𝑡, 𝜃) is bounded. Thus, we shall 

point out that the ℎ-stability assumption we made for 

the auxiliary system is a checkable condition. 

Moreover, the additional conditions introduced in 

Theorem 4 and 5 are foreseeable since we convert (1) 

to an integral equation. In the last main result of the 

manuscript, namely Theorem 6, the connection 

between uniform boundedness and ℎ-stability notions 

is highlighted similarly to Theorem 4 and 5. 

The outcomes of the manuscript are not only 

a unification but also a significant extension for the 

established literature since they allow us to consider 

ℎ-stability of functional dynamical equations on 

general domains not restricted to 𝕋 = ℝ or 𝕋 = ℤ. 
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