IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gıda ve Yem Bilimi Teknolojisi Dergisi
  • Issue:32
  • Bioproduction of xylitol by Candida tropicalis 13803 from pistachio shell hydrolysate obtained throu...

Bioproduction of xylitol by Candida tropicalis 13803 from pistachio shell hydrolysate obtained through MW-HPCO2 system

Authors : Filiz Hazal, Hatice Neval Özbek, Murat Yilmaztekin, Fahrettin Göğüş, Derya Koçak Yanık
Pages : 48-59
Doi:10.56833/gidaveyem.1511298
View : 34 | Download : 54
Publication Date : 2024-07-22
Article Type : Research Paper
Abstract :Objective: Biotechnological xylitol production from secondary agricultural residues is a promising approach for a sustainable and environmental purpose. Lignocellulosic biomass is a significant feedstock for biofuel and biochemical production. Its accessibility, cost-effectiveness, renewability, and environmental friendliness make it an attractive alternative to fossil fuels and other conventional sources of energy and chemicals. Materials and methods: In this study, the conversion of xylan to xylose in a pistachio shell was provided with a novel technology of a microwave-assisted high-pressure CO2/H2O system. Xylose rich pistachio shell hydrolysate was utilized by Candida tropicalis ATCC 13803 for xylitol production. Different concentrations of xylose (50, 100, and 150 g/L) were employed for xylitol production in shake-flask. Results and conclusion: HMF and furfural were completely removed from xylose-rich hydrolysate by activated charcoal. The improvement in yeast performance was limited with increasing xylose concentration. The highest xylitol produced by C. tropicalis from pistachio shell hydrolysate (65.15 g/L) and the maximum yield of xylitol 0.66 g/g with 100 g/L xylose were obtained in shake-flask whereas xylitol produced at 50 g/L and 150 g/L xylose were 0.65 and 0.37 g/g, respectively. Volumetric productivity at 100 g/L of xylose was 1.28 times and 1.84 times higher compared to xylose concentrations of 50 g/L and 150 g/L, respectively. Xylitol production performance (71.73 g/L) of detoxified pistachio shell hydrolysate at 100 g/L of xylose was almost identical to pure xylose. However, the yeast was not able to consume xylose at 150 g/L resulting in no xylitol production.
Keywords : Ksiloz, mikrodalga destekli yüksek basınçlı CO2 H2O hidrolizi, fıstık kabuğu hidrolizatı, ksilitol, Candida tropicalis

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025